
brightONE

Tracing best
practices

Marcin Mrowiński

Senior Software Engineer

brightONE

marcin.mrowinski@brightone.pl

1

brightONE

 Agenda:

 Trace

 Good & wrong traces

 Examples

 Summary

 Additional hints

 Advanced example

 Questions?

Tracing best practices

2

brightONE

Trace

3

brightONE

 Worst traces



Traces in real life

4

brightONE

 Worst traces



 Wrong trace:

 Hello everyone, let’s start training

Traces in real life

5

brightONE

 Worst traces



 Wrong trace:

 Hello everyone, let’s start training

 Better trace:

 Hello, I’m Marcin Mrowiński, I’m Senior Software Engineer and in BrightONE.

Trainng is about how to properly use traces in code

Traces in real life

6

brightONE

 Worst traces



 Wrong trace:

 Hello everyone, let’s start training

 Better trace:

 Hello, I’m Marcin Mrowiński, I’m Senior Software Engineer and in BrightONE.

Trainng is about how to properly use traces in code

 Best trace:

 Hi, I’m Marcin Mrowiński. P4 in BrightONE. Training about presentation topic

Traces in real life

7

brightONE

Traces example

8

brightONE

Traces example – Android

9

brightONE

„Any non-trivial program

contains at least one bug”

- Anonymous

You need TRACES to find it!

Traces purpose

10

brightONE

 Trace program execution

 Possible to check application state

 Easy code analysis

 Traces characteristic:

 Provided by testers & developers

 Contains low level information

 Generally noisy

 No limitation to output format

 Does not need localization

 Can be added almost anywhere

Traces purpose

11

brightONE

 Other developers should be able to understand teammates traces.

 Testers should be able to understand traces

 Learn the traces that are vital to test scenarios!

 Input (screen, button)

 Audio situation

 Device detection

 HMI screen

 Network

Trace story

12

brightONE

 Business application can be extremly big!

 Business application traces example:

 20 000 traces during start-up phase (first minute)

 2 600 traces/min on average

 1h of application running = 20MB of traces (160k lines of traces)

 If problem detected in application is RARE, you will get traces only ONCE!

Your traces has to be best quality possible

Traces scale

13

brightONE

Good & wrong Traces

14

brightONE

 Good trace:

 Trace that gives user as most useful information as possible

 Good tracing:

 As least traces as possible, giving overall view of what happened and what
was the root cause. Allow to analyse problem relatively fast without repro

 Wrong trace:

 Trace that does NOT contain useful information or makes analysis impossible

 Wrong tracing:

 Lots of traces which are not telling much, sometimes allows to restore
callstack, but rarely to solve the problem. Require to repro in order to solve
the issue

Definitions

15

brightONE

 Why wrong traces are wrong?

 It’s difficult to tell what happened in regular case

 It’s impossible to tell what happened in rare case

 Why too much traces is wrong?

 Too much information makes analysis difficult – it’s hard to focus on single aspect

 Possible performance issues

 Small number of traces?

 Unknown callstack – bad news

 Task doing a lot, only to check if it’s active - awesome

Wrong traces

16

brightONE

Examples

17

brightONE

Not enough traces

18

brightONE

Useless trace, double tracing, no parameters

19

brightONE

Useless trace, double tracing, no parameters

20

brightONE

Traces in loop

21

brightONE

Traces in loop

22

brightONE

Reduntant tracing

23

brightONE

Reduntant tracing

24

brightONE

Summary

25

brightONE

 Input values

 Summaries

 Success

 Warnings

 Errors (decide on which function nest level)

 Member values if used in function

 Thread prio, threads Ids at startup

What should be traced?

26

!!!

brightONE

 Empty function entries, unless necessary - try to make it useful

 Loops and every calculation

 „Timed" events if too much

 It all depends on the situation – think, try, rework. Be smart!

 Collect traces while testing your code!

 Are you able to tell what happened?

 Which traces are not needed?

What should NOT be traced

27

brightONE

Traces example - OLD

28

brightONE

Traces example - NEW

29

brightONE

Additional hints

30

brightONE

 Add some more traces for new modules, remove from old modules

 Avoid the use of 'decorators' (e.g. ****, !!!)

 Read documentation

 Some functions may return error which needs to be printed with

GetLastError() [WinAPI]

 We may not want to support every error – single trace can be used for

different errors

Hints for good traces

31

brightONE

WaitForSingleObject [WinAPI]

32

Return values example

brightONE

 Compress it into short one!

 Example:

 CMyClassObject::myVeryLongFunctionName parameter1=2,

parameter2=8, parameter3=15

 CMCO::myVeryLongFncName p1:2 p2:8 p3:15

 Keep identifier unique

 Keep messages as short as possible without making them unreadable

I need very looooooooong trace

33

brightONE

Advanced example

34

brightONE

 Producer add several tasks to queue

 Some of the tasks are „problematic” and cannot be calculated

 Machine process tasks, one after another & tries to calculate result

Advanced example

35

TASK

brightONE

 Task producer adds task objects to Queue

 Queue handles tasks

 Worker Thread is waiting for task to process

Advanced example

36

ID=3 ID=1

Task producer

Queue

Worker

Thread

ID=2

brightONE

 CalculationTask:

 calculates result which takes some time (ID * 3 * 1000msec)

 return true on success or false on fail

Advanced example

37

Task producer

ProcessingEngine

bool init(void);

bool addTask(ITask* a_pTask);

ITask* getLastTask(void);

DWORD ThreadProc(...);

CalculationTask

bool process(void)

brightONE

 Task producer adds 3 tasks to ProcessingEngine queue:

Advanced example

38

Task producer

ProcessingEngine

bool init(void);

bool addTask(ITask* a_pTask);

ITask* getLastTask(void);

DWORD ThreadProc(...);

CalculationTask

bool process(void)

ID=3

success

ID=2

success

ID=1

fail

brightONE

 ProcessingEngine:

 when not busy, takes first task from queue (removing it)

 process taken task

 wait for another task

Advanced example

39

Task producer

ProcessingEngine

bool init(void);

bool addTask(ITask* a_pTask);

ITask* getLastTask(void);

DWORD ThreadProc(...);

CalculationTask

bool process(void)

brightONE

 SAME logic – 1 BUG

Advanced example – trace output

40

brightONE

Wrong ProcessingEngine

41

brightONE

Good ProcessingEngine

42

brightONE

Comparison

43

brightONE

 Make Traces:

 Concise

 Readable

 Matter

„think, try, rework. Be smart!”

Conclusion

44

brightONE

Questions?

45

brightONE

Marcin Mrowiński

Senior Software Engineer

brightONE

marcin.mrowinski@brightone.pl

46

