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Trace 
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 Worst traces 

   

 

Traces in real life 
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 Worst traces 

   

 Wrong trace: 

 Hello everyone, let’s start training 

 

Traces in real life 

5 



brightONE 

 Worst traces 

   

 Wrong trace: 

 Hello everyone, let’s start training 

 Better trace:  

 Hello, I’m Marcin Mrowiński, I’m Senior Software Engineer and in BrightONE. 

Trainng is about how to properly use traces in code 

 

Traces in real life 
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 Worst traces 

   

 Wrong trace: 

 Hello everyone, let’s start training 

 Better trace:  

 Hello, I’m Marcin Mrowiński, I’m Senior Software Engineer and in BrightONE. 

Trainng is about how to properly use traces in code 

 Best trace: 

 Hi, I’m Marcin Mrowiński. P4 in BrightONE. Training about presentation topic 

 

Traces in real life 
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Traces example 
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Traces example – Android 
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„Any non-trivial program  

contains at least one bug”  

- Anonymous 

 

You need TRACES to find it! 

Traces purpose 
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 Trace program execution 

 Possible to check application state 

 Easy code analysis 

 

 Traces characteristic: 

 Provided by testers & developers 

 Contains low level information 

 Generally noisy 

 No limitation to output format 

 Does not need localization 

 Can be added almost anywhere 

 

Traces purpose 
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 Other developers should be able to understand teammates traces.  

 Testers should be able to understand traces 

 

 Learn the traces that are vital to test scenarios!  

 Input (screen, button) 

 Audio situation 

 Device detection 

 HMI screen  

 Network 

Trace story 
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 Business application can be extremly big! 

 

 Business application traces example: 

 20 000 traces during start-up phase (first minute) 

 2 600 traces/min on average 

 1h of application running = 20MB of traces (160k lines of traces) 

 

 If problem detected in application is RARE, you will get traces only ONCE! 

Your traces has to be best quality possible 

 

Traces scale 

13 



brightONE 

Good & wrong Traces 
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 Good trace: 

 Trace that gives user as most useful information as possible 

 Good tracing: 

 As least traces as possible, giving overall view of what happened and what 
was the root cause. Allow to analyse problem relatively fast without repro 

 

 Wrong trace: 

 Trace that does NOT contain useful information or makes analysis impossible 

 Wrong tracing: 

 Lots of traces which are not telling much, sometimes allows to restore 
callstack, but rarely to solve the problem. Require to repro in order to solve 
the issue 

 

Definitions 
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 Why wrong traces are wrong? 

 It’s difficult to tell what happened in regular case 

 It’s impossible to tell what happened in rare case 

 

 Why too much traces is wrong? 

 Too much information makes analysis difficult – it’s hard to focus on single aspect 

 Possible performance issues 

 

 Small number of traces?  

 Unknown callstack – bad news 

 Task doing a lot, only to check if it’s active - awesome 

Wrong traces 
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Examples 
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Not enough traces 
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Useless trace, double tracing, no parameters 
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Useless trace, double tracing, no parameters 
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Traces in loop 
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Traces in loop 
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Reduntant tracing 
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Reduntant tracing 
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Summary 

25 



brightONE 

 Input values 

 Summaries 

 Success 

 Warnings 

 Errors (decide on which function nest level) 

 

 Member values if used in function 

 Thread prio, threads Ids at startup 

What should be traced? 
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 Empty function entries, unless necessary - try to make it useful 

 Loops and every calculation 

 „Timed" events if too much 

 

 It all depends on the situation – think, try, rework. Be smart! 

 

 Collect traces while testing your code! 

 Are you able to tell what happened?  

 Which traces are not needed? 

 

What should NOT be traced 
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Traces example - OLD 
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Traces example - NEW 
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Additional hints 
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 Add some more traces for new modules, remove from old modules 

 Avoid the use of 'decorators' (e.g. ****, !!!)  

 

 Read documentation 

 Some functions may return error which needs to be printed with 

GetLastError() [WinAPI] 

 We may not want to support every error – single trace can be used for 

different errors 

Hints for good traces 
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WaitForSingleObject [WinAPI] 

32 

Return values example 



brightONE 

 Compress it into short one! 

 

 Example: 

 CMyClassObject::myVeryLongFunctionName parameter1=2, 

parameter2=8, parameter3=15 

 CMCO::myVeryLongFncName p1:2 p2:8 p3:15 

 

 Keep identifier unique 

 Keep messages as short as possible without making them unreadable 

 

I need very looooooooong trace 
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Advanced example 
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 Producer add several tasks to queue 

 Some of the tasks are „problematic” and cannot be calculated 

 Machine process tasks, one after another & tries to calculate result 

Advanced example 
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 Task producer adds task objects to Queue 

 Queue handles tasks 

 Worker Thread is waiting for task to process 

Advanced example 
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ID=3 ID=1 

Task producer 

Queue 

Worker 

Thread 

ID=2 
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 CalculationTask: 

 calculates result which takes some time (ID * 3 * 1000msec) 

 return true on success or false on fail 

Advanced example 
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Task producer 

ProcessingEngine 

 

bool init(void); 

bool addTask(ITask* a_pTask); 

ITask* getLastTask(void); 

 

DWORD ThreadProc(...); 

CalculationTask 

 

bool process(void) 
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 Task producer adds 3 tasks to ProcessingEngine queue: 

Advanced example 
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Task producer 

ProcessingEngine 

 

bool init(void); 

bool addTask(ITask* a_pTask); 

ITask* getLastTask(void); 

 

DWORD ThreadProc(...); 

CalculationTask 

 

bool process(void) 

ID=3 

success 

ID=2 

success 

ID=1 

fail 
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 ProcessingEngine: 

 when not busy, takes first task from queue (removing it) 

 process taken task 

 wait for another task 

Advanced example 
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Task producer 

ProcessingEngine 

 

bool init(void); 

bool addTask(ITask* a_pTask); 

ITask* getLastTask(void); 

 

DWORD ThreadProc(...); 

CalculationTask 

 

bool process(void) 
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 SAME logic – 1 BUG 

Advanced example – trace output 
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Wrong ProcessingEngine 
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Good ProcessingEngine 
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Comparison 
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 Make Traces: 

 Concise 

 Readable 

 Matter 

 

 

„think, try, rework. Be smart!” 
 

Conclusion 
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Questions? 
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